Reconstitution of laminin-111 biological activity using multiple peptide coupled to chitosan scaffolds.
نویسندگان
چکیده
Laminin-111, a multifunctional matrix protein, has diverse biological functions. Previously, we have identified various biologically active sequences in laminin-111 by a systematic peptide screening. We also demonstrated that peptide-conjugated chitosan matrices enhance the biological functions of the active sequences and are useful as a scaffold. Here, we conjugated sixty biologically active laminin-111 peptides onto chitosan matrices. The twenty-nine peptide-chitosan matrices promoted various biological activities, including cell attachment, spreading, and neurite outgrowth. The biological activities of peptide-chitosan matrices depend on the peptide. These peptide-chitosan matrices are categorized into six groups depending on their biological activities. Next, we conjugated five active peptides, which showed strong cell attachment activity in the each group, onto a single chitosan matrix to mimic the multiple activities of laminin-111. The mixed peptides-chitosan matrix significantly promoted cell attachment and cell spreading over that observed with the individual peptides. We also demonstrated that a mixed peptides-chitosan matrix, using four neurite outgrowth-promoting peptides each from a different group, enhanced the activity. These data suggest that the mixed peptides synergistically induce laminin-like biological activities on a chitosan matrix. The active peptides-chitosan matrices described here have potential for use as biomaterial for tissue engineering and regeneration.
منابع مشابه
Active Peptide-Conjugated Chitosan Matrices as an Artificial Basement Membrane
The basement membrane, a thin extracellular matrix, plays a critical role in tissue development and repair. Laminins are the major component of basement membrane and have diverse biological activities. We have identified various cell-adhesive peptides from laminins and their specific cell surface receptors. Polysaccharides, including chitosan, have been used as scaffolds, which regulate cellula...
متن کاملP 99: Self-Assembling Peptide Scaffolds as New Therapeutic Method in TBI: Focused on Bioactive Motifs
Traumatic brain injury (TBI) is a common reason of brain tissue loss as a result of tumors, accidents, and surgeries. Renewal of the brain parenchyma is restricted by many reasons such as inimical substances produced as the result of trauma and also inflammatory responses. A strong cascade of inflammatory responses begins as a result of TBI which include recalling peripheral leukocytes into the...
متن کاملRegioselective conjugation of chitosan with a laminin-related peptide, Tyr-Ile-Gly-Ser-Arg, and evaluation of its inhibitory effect on experimental cancer metastasis.
A conjugate from the YIGSR peptide and chitosan has been prepared on the basis of a regioselective modification strategy of chitosan, and its antimetastatic activity has been assayed. Chitosan was converted to its organosoluble derivative, 6-O-trityl-chitosan, in 3 steps, and then coupled with the peptide portion containing a spacer amino acid, Ac-Tyr-Ile-Gly-Ser-Arg-beta Ala-OH [beta Ala; beta...
متن کاملNanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior
Objective(s): Fabrication of scaffolds with improved mechanical properties and favorable cellular compatibility is crucial for many tissue engineering applications. This study was aimed to improve mechanical and biological properties of polycaprolactone (PCL), which is a common biocompatible and biodegradable synthetic polymer in tissue engineering. Nanofibrillated chitosan (NC) was used as a n...
متن کاملSignificant Type I and Type III Collagen Production from Human Periodontal Ligament Fibroblasts in 3D Peptide Scaffolds without Extra Growth Factors
We here report the development of two peptide scaffolds designed for periodontal ligament fibroblasts. The scaffolds consist of one of the pure self-assembling peptide scaffolds RADA16 through direct coupling to short biologically active motifs. The motifs are 2-unit RGD binding sequence PRG (PRGDSGYRGDS) and laminin cell adhesion motif PDS (PDSGR). RGD and laminin have been previously shown to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 33 17 شماره
صفحات -
تاریخ انتشار 2012